Author Affiliations
Abstract
1 State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, People’s Republic of China
2 Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People’s Republic of China
3 Institute of Nanoscience and Nanotechnology, School of Physical Science and Technology, Central China Normal University, Wuhan 430079, People’s Republic of China
Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF6), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li+ and “dead” Li) during cycling. It is found that the accumulation of both SEI Li+ and “dead” Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF6 salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of “dead” Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the “dead” Li and SEI Li+ inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs.
Nano-Micro Letters
2023, 15(1): 234
Author Affiliations
Abstract
1 School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710000, Shaanxi, China.
2 School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.
3 School of Computer Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau, China.
4 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, Shaanxi, China.
Manganese dioxide (MnO2) is a widely used and well-studied 3-dimensional (3D) transition metal oxide, which has advantages in ultrafast optics due to large specific surface area, narrow bandgap, multiple pores, superior electron transfer capability, and a wide range of light absorption. However, few studies have considered its excellent performance in ultrafast photonics. γ-MnO2 photonics devices were fabricated based on a special dual-core, pair-hole fiber (DCPHF) carrier and applied in ultrafast optics fields for the first time. The results show that the soliton molecule with tunable temporal separation (1.84 to 2.7 ps) and 600-MHz harmonic solitons are achieved in the experiment. The result proves that this kind of photonics device has good applications in ultrafast lasers, high-performance sensors, fiber optical communications, etc., which can help expand the prospect of combining 3D materials with novel fiber for ultrafast optics device technology.
Ultrafast Science
2023, 3(1): 0006
作者单位
摘要
渤海大学化学与材料工程学院,辽宁省全谱太阳能电池转光材料专业技术创新中心,锦州 121013
本文在水热条件下成功合成了一例Keggin型多酸基超分子化合物1,其分子式为H3[(3-PA)4(PW12O40)](3-PA=3-(3-吡啶)丙烯酸),并通过单晶X射线衍射、元素分析(EA)、红外(IR)光谱、X射线粉末衍射(PXRD)、热重(TG)和固体紫外-可见(UV-Vis)漫反射对化合物1的结构进行了表征。化合物1属于三斜晶系,P-1空间群,a=1.200 33(3) nm,b=1.216 42(3) nm,c=1.424 66(4) nm,α=75.030(1)°,β=73.452(1)°,γ=69.372(1)°,V=1.837 00(8) nm3,Z=1,Mr=3 476.78,F(000)=1 538,μ=18.815 mm-1,Dc=3.143 mg·m-3,S=1.062,R1=0.046 2,wR2=0.138 7。化合物1的结构单元包含一个[PW12O40]3-多阴离子和四个3-PA配体,并通过[PW12O40]3-多阴离子和3-PA配体之间的氢键连接形成二维超分子层。化合物1在光催化还原Cr(Ⅵ)反应中展现出良好的光催化活性,并具有较好的结构稳定性和可循环利用性。
多金属氧酸盐 水热合成 超分子化合物 光催化 Cr(VI)还原 polyoxometalate hydrothermal synthesis supramolecular complex photocatalysis Cr(VI) reduction 
人工晶体学报
2023, 52(8): 1485
作者单位
摘要
1 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
2 中国科学院 高能物理研究所,北京 100049
3 中国科学院 福建物质结构研究所,福州 350002
4 中国工程物理研究院 总体工程研究所,四川 绵阳 621900
5 中国工程物理研究院 材料研究所,四川 绵阳 621907
6 湖北三江航天江河化工科技有限公司,湖北 宜昌 444200
7 中国工程物理研究院,四川 绵阳 621900
报道了基于光阴极S波段电子直线加速器建成的9 MeV高能微焦点射线成像系统“精卫”,X射线束横向尺寸小于100 μm,7 h剂量波动低至1.6%。初步开展成像实验结果表明:双丝像质计清晰分辨13D号丝,丝直径0.05 mm,CT测试卡测得空间分辨率优于10 lp/mm,装置同时兼容电子束能量6~18 MeV可调。
高能微焦点X射线源 高能工业CT 直线加速器 光阴极 high-energy micro-focus X-ray source high-energy industrial CT linac photocathode 
强激光与粒子束
2022, 34(12): 124001
作者单位
摘要
1陕西师范大学 物理学与信息技术学院,西安 710072
从行为组织学开创了光子计算的先河以来,基于人工智能的光学计算已经发展了七十多年,这一历程对超快光子学的智能化研究产生了重要影响。近年来,因超短脉冲非线性多维相互作用的复杂化,让超快光子学方向的研究产生了巨大的发展潜力。智能超快光子学的研究,为超短脉冲数据的完整、准确和有代表性提供了新的推动力量。在这里,我们回顾了机器学习策略下超短脉冲光纤激光系统的最新进展。通过算法和控制元件两方面的设计,进一步概述了满足这些进展所需的技术条件。并对机器学习与超快光子学这一新兴交叉技术所存在的挑战与未来研究前景做出展望。
光子学报
2022, 51(8): 0851518
薛俊达 1,2朱家佳 1,2,**张静 1,2,*李晓辉 1,***[ ... ]李传荣 1
作者单位
摘要
1 中国科学院空天信息创新研究院, 中国科学院定量遥感信息技术重点实验室, 北京100094
2 中国科学院大学, 北京100049
面向高效、高精度光学遥感图像目标检测应用,重点针对提升SSD(single shot multibox detector)模型对图像中聚集分布的小尺寸目标检测精度的难点,提出一种FFC-SSD(multi-scale feature fusion & clustering SSD)改进模型;设计目标框分组聚类(BGC)模块,采用分组聚类的方法获得更符合目标样本尺寸分布的默认目标框参数并给予小尺寸目标更多关注,以有效提升网络对目标位置信息的提取能力;设计反池化高效多尺度特征融合(MSFF)模块,以在增强模型目标特征提取能力的同时有效减小模型效率损耗。实验结果显示了所提模型对光学遥感图像目标检测的有效性与适用性,较好地实现了精度与效率的平衡,对小尺寸目标具有较高的检测精度。
图像处理 目标检测 光学遥感图像 多尺度特征融合 聚类 
光学学报
2022, 42(12): 1210002
Author Affiliations
Abstract
National Key Laboratory of High-power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
A novel harmonic mode-locked fiber laser based on nonlinear multimode interference (NL-MMI) in a microfiber-assisted ultrafast optical switch is proposed in this Letter. The microfiber-assisted ultrafast optical switch can be obtained by tapering the splicing point of the graded-index multimode fiber (GIMF) and single-mode fiber, which not only helps to shorten the self-imaging period in GIMF to relax the strict requirement of NL-MMI on the length of multimode fiber, but also improves the harmonic order. In the experiment, with the waist diameter of 15 µm, the repetition rates of the fiber laser can be stably locked at 285 MHz, corresponding to the 16th-order harmonic mode-locking, with the pulse duration of 1.52 ps. Our results provide novel insight into the design of a high-repetition-rate laser and the application of microfibers in the mode-locking device.
multimode interference optical fiber devices laser mode-locking 
Chinese Optics Letters
2022, 20(1): 010601
作者单位
摘要
渤海大学化学与材料工程学院, 辽宁省全谱太阳能电池转光材料专业技术创新中心, 锦州 121013
通过水热合成方法, 以钼酸铵、氯化镍和4-氨基吡啶为原料成功合成了一个Keggin型多酸基超分子化合物H3[{H(4-AP)}6(PMoV6MoVI6O40)] (4-AP=4-氨基吡啶)。该化合物的结构单元包含一个[PMoV6MoVI6O40]9-阴离子和6个质子化的配体。而[PMoV6MoVI6O40]9-阴离子与配体之间通过N(1)-H(1)…O(3)、N(2)-H(2A)…O(5)和N(2)-H(2B)…O(1)三种氢键相互作用, 进而形成二维超分子层。通过X射线单晶衍射、IR和粉末X射线衍射对其进行表征。晶体结构分析表明: 该标题化合物属于三方晶系, R-3空间群, a=2.191 2 (10) nm, b=2.191 2 (10) nm, c=1.042 3(5) nm, α=β=90°, γ=120°, V=4.333 8(4) nm3, Z=3, R1=0.036 2, wR2=0.095 6, 电催化性质研究表明该标题化合物对H2O2和K2Cr2O7具有良好的电催化还原效果, 以及对抗坏血酸具有良好的电催化氧化效果。
Keggin型多酸 超分子化合物 电催化性能 水热法 晶体结构 Keggin-type polyoxometalate supramolecular complex electrocatalytic performance hydrothermal method crystal structure 
人工晶体学报
2021, 50(11): 2123
作者单位
摘要
渤海大学化学与材料工程学院, 辽宁省全谱太阳能电池转光材料专业技术创新中心, 锦州 121013
通过水热反应, 成功合成了一个草酸配体修饰的四核锆取代的夹心型硅钨-氧簇合物H12Na2[Zr4(μ3-O)2(μ2-OH)2(Ox)2(α-SiW10O37)2]·22H2O (Ox=oxalic acid)。该夹心型硅钨-氧簇是由两个{α-SiW10O37}簇块通过一个{Zr4(μ3-O)2(μ2-OH)2(Ox)2}簇连接构成的。通过X-射线单晶衍射、IR、TG以及元素分析对该簇合物进行表征。晶体结构分析表明: 该簇合物结晶于单斜晶系, P21/c空间群, a=2.132 2 (6) nm, b=1.271 6 (4) nm, c=2.223 1 (7) nm, β=110.933(4)°, V=5.629 9(3) nm3, Z=2, R1=0.061 5, wR2=0.164 4。电化学和电催化性质研究表明标题簇合物对NO-2的还原有很好的电催化效果。
水热合成 草酸 钨-氧簇合物 晶体结构 电化学 电催化性质 hydrothermal synthesis oxalic acid tungsten-oxo cluster crystal structure electrochemistry electrocatalytic property 
人工晶体学报
2021, 50(5): 884
Author Affiliations
Abstract
1 Key Laboratory of Nanodevice and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
2 Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
3 Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
4 School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
5 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
Graphene, as a saturable absorber (SA), has attracted much attention for its application in ultrashort pulse fiber lasers due to its ultrafast interband carrier relaxation and ultra-broadband wavelength operation. Nevertheless, during the stacking process of monolayer graphene layer, the induced nonuniform contact at the interface of graphene layers deteriorate the device performance. Herein, we report the fabrication of graphene saturable absorber mirrors (SAMs) via a one-step transfer process and the realization of the much enlarged modulation depth and the much reduced nonsaturable loss with tri-layer graphene (TLG) than single-layer graphene (SLG) due to the improved uniform contact at the interface. Moreover, the operation of 1550 nm mode-locked Er-doped fiber laser with the TLG SAM exhibits excellent output characteristics of the maximum output power of 9.9 mW, a slope efficiency of 2.4% and a pulse width of 714 fs. Our findings are expected to pave the way toward high-performance ultrashort pulse fiber lasers based on graphene SAs.
Journal of Semiconductors
2020, 41(1): 012302

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!